A Basic Family of Iteration Functions for Polynomial Root Finding and Its Characterizations

نویسندگان

  • Bahman Kalantari
  • Iraj Kalantari
چکیده

Let p(x) be a polynomial of degree n 2 with coe cients in a sub eld K of the complex numbers. For each natural number m 2, let L m (x) be the m m lower triangular matrix whose diagonal entries are p(x) and for each j = 1; : : : ; m 1, its j-th subdiagonal entries are p (j) (x)=j!. For i = 1; 2, let L (i) m (x) be the matrix obtained from L m (x) by deleting its rst i rows and its last i columns. L (1) 1 (x) 1. Then, the function B m (x) = x p(x) det(L (1) m 1 (x))=det(L (1) m (x)) is a member of S(m;m + n 2), where for any M m, S(m;M) is the set of all rational iteration functions such that for all roots of p(x) , g(x) = + P M i=m i (x)( x) i , with i (x)'s also rational and well-de ned at . Given g 2 S(m;M), and a simple root of p(x), g (i) ( ) = 0, i = 1; : : : ; m 1, and m ( ) = ( 1) m g (m) ( )=m!. For B m (x) we obtain m ( ) = ( 1) m det(L (2) m+1 ( ))=det(L (1) m ( )). For m = 2 and 3, B m (x) coincides with Newton's and Halley's, respectively. If all roots of p(x) are simple, B m (x) is the unique member of S(m;m + n 2). By making use of the identity 0 = P n i=0 [p (i) (x)=i!]( x) i , we arrive at two recursive formulas for constructing iteration functions within the S(m;M) family. In particular the B m 's can be generated using one of these formulas. Moreover, the other formula gives a simple scheme for constructing a family of iteration functions credited to Euler as well as Schr oder, whose m-th order member belong to S(m;mn), m > 2. The iteration functions within S(m;M) can be extended to arbitrary smooth functions f , with the automatic replacement of p (j) with f (j) in g as well as m ( ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combinatorial Construction of High Order Algorithms for Finding Polynomial Roots of Known Multiplicity

We construct a family of high order iteration functions for finding polynomial roots of a known multiplicity s. This family is a generalization of a fundamental family of high order algorithms for simple roots that dates back to Schröder’s 1870 paper. It starts with the well known variant of Newton’s method B̂2(x) = x − s · p(x)/p′(x) and the multiple root counterpart of Halley’s method derived ...

متن کامل

A new family of four-step fifteenth-order root-finding methods with high efficiency index

‎In this paper a new family of fifteenth-order methods with high efficiency index is presented‎. This family include four evaluations of the function and one evaluation of its first derivative per iteration.‎ ‎Therefore‎, ‎this family of methods has the efficiency index which equals 1.71877‎. ‎In order to show the applicability and validity of the class‎, ‎some numerical examples are discussed‎.

متن کامل

Polynomial Root-Finding Methods Whose Basins of Attraction Approximate Voronoi Diagram

Given a complex polynomial p(z) with at least three distinct roots, we first prove no rational iteration function exists where the basin of attraction of a root coincides with its Voronoi cell. In spite of this negative result, we prove the Voronoi diagram of the roots can be well approximated through a high order sequence of iteration functions, the Basic Family, Bm(z), m ≥ 2. Let θ be a simpl...

متن کامل

Approximation of Polynomial Root Using a Single Input and the Corresponding Derivative Values

A new formula for the approximation of root of polynomials with complex coefficients is presented. For each simple root there exists a neighborhood such that given any input within this neighborhood, the formula generates a convergent sequence, computed via elementary operations on the input and the corresponding derivative values. Each element of the sequence is defined in terms of the quotien...

متن کامل

A Family of Root Finding Methods*

A one parameter family of iteration functions for finding roots is derived. ] h e family includes the Laguerre, Halley, Ostrowski and Euler methods and, as a limiting case, Newton's method. All the methods of the family are cubically convergent for a simple root (except Newton's which is quadratically convergent). The superior behavior of Laguerre's method, when starting from a point z for whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997