A Basic Family of Iteration Functions for Polynomial Root Finding and Its Characterizations
نویسندگان
چکیده
Let p(x) be a polynomial of degree n 2 with coe cients in a sub eld K of the complex numbers. For each natural number m 2, let L m (x) be the m m lower triangular matrix whose diagonal entries are p(x) and for each j = 1; : : : ; m 1, its j-th subdiagonal entries are p (j) (x)=j!. For i = 1; 2, let L (i) m (x) be the matrix obtained from L m (x) by deleting its rst i rows and its last i columns. L (1) 1 (x) 1. Then, the function B m (x) = x p(x) det(L (1) m 1 (x))=det(L (1) m (x)) is a member of S(m;m + n 2), where for any M m, S(m;M) is the set of all rational iteration functions such that for all roots of p(x) , g(x) = + P M i=m i (x)( x) i , with i (x)'s also rational and well-de ned at . Given g 2 S(m;M), and a simple root of p(x), g (i) ( ) = 0, i = 1; : : : ; m 1, and m ( ) = ( 1) m g (m) ( )=m!. For B m (x) we obtain m ( ) = ( 1) m det(L (2) m+1 ( ))=det(L (1) m ( )). For m = 2 and 3, B m (x) coincides with Newton's and Halley's, respectively. If all roots of p(x) are simple, B m (x) is the unique member of S(m;m + n 2). By making use of the identity 0 = P n i=0 [p (i) (x)=i!]( x) i , we arrive at two recursive formulas for constructing iteration functions within the S(m;M) family. In particular the B m 's can be generated using one of these formulas. Moreover, the other formula gives a simple scheme for constructing a family of iteration functions credited to Euler as well as Schr oder, whose m-th order member belong to S(m;mn), m > 2. The iteration functions within S(m;M) can be extended to arbitrary smooth functions f , with the automatic replacement of p (j) with f (j) in g as well as m ( ).
منابع مشابه
A Combinatorial Construction of High Order Algorithms for Finding Polynomial Roots of Known Multiplicity
We construct a family of high order iteration functions for finding polynomial roots of a known multiplicity s. This family is a generalization of a fundamental family of high order algorithms for simple roots that dates back to Schröder’s 1870 paper. It starts with the well known variant of Newton’s method B̂2(x) = x − s · p(x)/p′(x) and the multiple root counterpart of Halley’s method derived ...
متن کاملA new family of four-step fifteenth-order root-finding methods with high efficiency index
In this paper a new family of fifteenth-order methods with high efficiency index is presented. This family include four evaluations of the function and one evaluation of its first derivative per iteration. Therefore, this family of methods has the efficiency index which equals 1.71877. In order to show the applicability and validity of the class, some numerical examples are discussed.
متن کاملPolynomial Root-Finding Methods Whose Basins of Attraction Approximate Voronoi Diagram
Given a complex polynomial p(z) with at least three distinct roots, we first prove no rational iteration function exists where the basin of attraction of a root coincides with its Voronoi cell. In spite of this negative result, we prove the Voronoi diagram of the roots can be well approximated through a high order sequence of iteration functions, the Basic Family, Bm(z), m ≥ 2. Let θ be a simpl...
متن کاملApproximation of Polynomial Root Using a Single Input and the Corresponding Derivative Values
A new formula for the approximation of root of polynomials with complex coefficients is presented. For each simple root there exists a neighborhood such that given any input within this neighborhood, the formula generates a convergent sequence, computed via elementary operations on the input and the corresponding derivative values. Each element of the sequence is defined in terms of the quotien...
متن کاملA Family of Root Finding Methods*
A one parameter family of iteration functions for finding roots is derived. ] h e family includes the Laguerre, Halley, Ostrowski and Euler methods and, as a limiting case, Newton's method. All the methods of the family are cubically convergent for a simple root (except Newton's which is quadratically convergent). The superior behavior of Laguerre's method, when starting from a point z for whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997